22 research outputs found

    Characterization of intracortical synaptic connections in the mouse anterior cingulate cortex using dual patch clamp recording

    Get PDF
    The anterior cingulate cortex (ACC) is involved in sensory, cognitive, and executive functions. Studies of synaptic transmission and plasticity in the ACC provide an understanding of basic cellular and molecular mechanisms for brain functions. Previous anatomic studies suggest complex local interactions among neurons within the ACC. However, there is a lack of functional studies of such synaptic connections between ACC neurons. In the present study, we characterized the neuronal connections in the superficial layers (I-III) of the mouse ACC using dual whole-cell patch clamp recording technique. Four types of synaptic connections were observed, which are from a pyramidal neuron to a pyramidal neuron, from a pyramidal neuron to an interneuron, from an interneuron to a pyramidal neuron and from an interneuron to an interneuron. These connections exist among neurons in layer II/III or between neurons located layer I and II/III, respectively. Moreover, reciprocal connections exist in all four types of paired neurons. Our results provide the first key evidence of functional excitatory and inhibitory connections in the ACC

    Sexual attraction enhances glutamate transmission in mammalian anterior cingulate cortex

    Get PDF
    Functional human brain imaging studies have indicated the essential role of cortical regions, such as the anterior cingulate cortex (ACC), in romantic love and sex. However, the neurobiological basis of how the ACC neurons are activated and engaged in sexual attraction remains unknown. Using transgenic mice in which the expression of green fluorescent protein (GFP) is controlled by the promoter of the activity-dependent gene c-fos, we found that ACC pyramidal neurons are activated by sexual attraction. The presynaptic glutamate release to the activated neurons is increased and pharmacological inhibition of neuronal activities in the ACC reduced the interest of male mice to female mice. Our results present direct evidence of the critical role of the ACC in sexual attraction, and long-term increases in glutamate mediated excitatory transmission may contribute to sexual attraction between male and female mice

    In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice

    Get PDF
    The anterior cingulate cortex (ACC) plays important roles in emotion, learning, memory and persistent pain. Our previous in vitro studies have demonstrated that pyramidal neurons in layer II/III of the adult mouse ACC can be characterized into three types: regular spiking (RS), intermediate (IM) and intrinsic bursting (IB) cells, according to their action potential (AP) firing patterns. However, no in vivo information is available for the intrinsic properties and sensory responses of ACC neurons of adult mice. Here, we performed in vivo whole-cell patch-clamp recordings from pyramidal neurons in adult mice ACC under urethane anesthetized conditions. First, we classified the intrinsic properties and analyzed their slow oscillations. The population ratios of RS, IM and IB cells were 10, 62 and 28%, respectively. The mean spontaneous APs frequency of IB cells was significantly greater than those of RS and IM cells, while the slow oscillations were similar among ACC neurons. Peripheral noxious pinch stimuli induced evoked spike responses in all three types of ACC neurons. Interestingly, IB cells showed significantly greater firing frequencies than RS and IM cells. In contrast, non-noxious brush did not induce any significant response. Our studies provide the first in vivo characterization of ACC neurons in adult mice, and demonstrate that ACC neurons are indeed nociceptive. These findings support the critical roles of ACC in nociception, from mice to humans

    Graph Convolutional Network with Connectivity Uncertainty for EEG-based Emotion Recognition

    Full text link
    Automatic emotion recognition based on multichannel Electroencephalography (EEG) holds great potential in advancing human-computer interaction. However, several significant challenges persist in existing research on algorithmic emotion recognition. These challenges include the need for a robust model to effectively learn discriminative node attributes over long paths, the exploration of ambiguous topological information in EEG channels and effective frequency bands, and the mapping between intrinsic data qualities and provided labels. To address these challenges, this study introduces the distribution-based uncertainty method to represent spatial dependencies and temporal-spectral relativeness in EEG signals based on Graph Convolutional Network (GCN) architecture that adaptively assigns weights to functional aggregate node features, enabling effective long-path capturing while mitigating over-smoothing phenomena. Moreover, the graph mixup technique is employed to enhance latent connected edges and mitigate noisy label issues. Furthermore, we integrate the uncertainty learning method with deep GCN weights in a one-way learning fashion, termed Connectivity Uncertainty GCN (CU-GCN). We evaluate our approach on two widely used datasets, namely SEED and SEEDIV, for emotion recognition tasks. The experimental results demonstrate the superiority of our methodology over previous methods, yielding positive and significant improvements. Ablation studies confirm the substantial contributions of each component to the overall performance.Comment: 10 page

    The research about radiometric technology of two-dimensional rotary table based on image gray level

    No full text
    Abstract It is difficult to measure infrared radiation quantitatively for fast dynamic targets such as aircraft and missile. At present, there are many problems such as low measurement accuracy, feedback delay, and complex measurement system. In this paper, a radiation measurement scheme based on image grayscale is proposed. The scheme adopts a two-dimensional turntable structure, which can measure the radiation quantity rapidly and accurately. Based on the image method, this method is used to calibrate the gray value of the target point and compare it with that of the absolute standard radiator, so as to obtain the radiation value of the target indirectly. The key of this method is to establish an accurate radiation measurement model. The proposed model based on dynamic calibration is about 50% more accurate than the traditional model. The final measurement accuracy of this model is 75%. Through the infrared radiation measurement of specific dynamic objects in two-dimensional space, it is found that the dynamic calibration model based on this measurement method has higher measurement precision

    Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma

    No full text
    Abstract Despite being significant in various diseases, including cancers, the impact of copper metabolism on osteosarcoma (OS) remains largely unexplored. This study aimed to use bioinformatics analyses to identify a reliable copper metabolism signature that could improve OS patient prognosis prediction, immune landscape understanding, and drug sensitivity. Through nonnegative matrix factorization (NMF) clustering, we revealed distinct prognosis-associated clusters of OS patients based on copper metabolism-related genes (CMRGs), showing differential gene expression linked to immune processes. The risk model, comprising 13 prognostic CMRGs, was established using least absolute shrinkage and selection operator (LASSO) Cox regression, closely associated with the OS microenvironment's immune situation and drug sensitivity. Furthermore, we developed an integrated nomogram, combining the risk score and clinical traits to quantitatively predict OS patient prognosis. The calibration plot, timeROC, and timeROC analyses demonstrated its predictable accuracy and clinical usefulness. Finally, we identified three independent prognostic signatures for OS patients: COX11, AP1B1, and ABCB6. This study confirmed the involvement of CMRGs in OS patient prognosis, immune processes, and drug sensitivity, suggesting their potential as promising prognostic signatures and therapeutic targets for OS

    Effects of the Combined Application of Trimethylated Chitosan and Carbodiimide on the Biostability and Antibacterial Activity of Dentin Collagen Matrix

    No full text
    The structural integrity of a dentin matrix that has been demineralized by the clinical use of etchants or calcium-depleting endodontic irrigants, such as endodontic ethylenediaminetetraacetic acid (EDTA), is often deteriorated due to the collagenolytic activities of reactivated endogenous enzymes as well as the infiltration of extrinsic bacteria. Therefore, the biomodification of dentin collagen with improved stability and antibacterial activity holds great promise in conservative dentistry. The purpose of this study was to evaluate the effects of the combined application of trimethylated chitosan (TMC) and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) on the biostability and antibacterial activity of the demineralized dentin collagen matrix. The morphological changes in the collagen matrix were observed by scanning electron microscopy (SEM), the amount of TMC adsorbed on the collagen surface was detected by X-ray photoelectron spectroscopy, and the elastic modulus was measured by a three-point bending device. Dry weight loss and amino acid release were detected to evaluate its anti-collagenase degradation performance. The antibacterial performance was detected by confocal microscopy. The TMC-treated group had less collagen space and a more compact collagen arrangement, while the untreated group had a looser collagen arrangement. The combined application of TMC and EDC can increase the elastic modulus, reduce the loss of elastic modulus, and result in good antibacterial performance. The current study proved that a dentin collagen matrix biomodified by TMC and EDC showed improved biodegradation resistance and antibacterial activities

    Pathological Features and Surgical Strategies of Cervical Deformity

    No full text
    Cervical deformity (CD) is a kind of disorder influencing cervical alignment. Although the incidence of CD is not high, this deformity can cause not only pain but also difficulties in daily activities such as swallowing and maintaining upright position. Even though the common cause of cervical deformity is still controversial, previous studies divided CD into congenital deformity and secondary deformity; secondary deformity includes iatrogenic and noniatrogenic deformity according to pathogenic factors. Due to the lack of relevant studies, a standardized evaluation for CD is absent. Even though the assessment of preoperative condition and surgical planning mainly rely on personal experience, the evaluation methods could still be summarized from previous studies. The objective in this article is to summarize studies on cervical scoliosis, identify clinical problems, and provide directions for researchers interested in delving deep into this specific topic. In this review, we found that the lack of standard classification system could lead to an absence of clinical guidance; in addition, the osseous landmarks and vascular distributions could be variable in CD patients, which might cause the risk of vascular or neurological complications; furthermore, multiple deformities were usually presented in CD patients, which might cause chain reaction after the correction of CD; this would prevent surgeons from choosing realignment surgery that is effective but risky

    Effects of Pine Needle Extracts on the Degradation of LLDPE

    No full text
    Polyolefin suffers from degradation during processing and application. To prolong the service life, antioxidants are needed in the packing formula of polyolefin products. The usage of natural antioxidants could avoid potential health hazards aroused by synthetic ones. Pine needles have long lives and hardly rot, suggesting their high resistance to degradation. To provide a new candidate of natural antioxidants and add more value to pine needles, pine needle extracts (PNE) were investigated as the antioxidant of linear low-density polyethylene (LLDPE). PNE-modified LLDPE (PE-PNE) exhibited much better short-term and long-term aging resistance than pure LLDPE (PE): Oxidation induction time (OIT) of PE-PNE was 52 times higher than that of PE, and the increments of carbonyl index (CI) of PE-PNE-1st samples placed under daylight and in the dark were approximately 75% and 63% of PE under the same conditions. It could be attributed to the attractive antioxidant capacity of PNE (IC50 of DPPH radical scavenging was 115 μg/mL). In addition, the PE-PNE sample showed high processing stability and maintenance of the mechanical property during multiple extrusions: only a 0.2 g/10 min decrease in melting flow rate was found after five extrusions; the tensile strength and elongation at break were almost unchanged. All results reveal that pine needle extracts could play a role in LLDPE stabilization. Moreover, as pine needles are mainly considered a kind of waste, the present study would benefit the budget-reducing polyolefin industry
    corecore